Role of the N-terminal transmembrane region of the multidrug resistance protein MRP2 in routing to the apical membrane in MDCKII cells.
نویسندگان
چکیده
In polarized cells, the multidrug resistance protein MRP2 is localized in the apical plasma membrane, whereas MRP1, another multidrug resistance protein (MRP) family member, is localized in the basolateral membrane. MRP1 and MRP2 are thought to contain an N-terminal region of five transmembrane segments (TMD(0)) coupled to 2 times six transmembrane segments via an intracellular loop (L(0)). We previously demonstrated for MRP1 that a mutant lacking TMD(0) but still containing L(0), called L(0)DeltaMRP1, was functional and routed to the lateral plasma membrane. To investigate the role of the TMD(0)L(0) region of MRP2 in routing to the apical membrane, we generated mutants similar to those made for MRP1. In contrast to L(0)DeltaMRP1, L(0)DeltaMRP2 was associated with an intracellular compartment, most likely endosomes. Co-expression with TMD(0), however, resulted in apical localization of L(0)DeltaMRP2 and transport activity. Uptake experiments with vesicles containing L(0)DeltaMRP2 demonstrated that the molecule is able to transport LTC(4). An MRP2 mutant without TMD(0)L(0), DeltaMRP2, was only core-glycosylated and localized intracellularly. Co-expression of DeltaMRP2 with TMD(0)L(0) resulted in an increased protein level of DeltaMRP2, full glycosylation of the protein, routing to the apical membrane, and transport activity. Our results suggest that the TMD(0) region is required for routing to or stable association with the apical membrane.
منابع مشابه
Characterization of the amino-terminal regions in the human multidrug resistance protein (MRP1).
The human multidrug resistance protein (MRP1) contributes to drug resistance in cancer cells. In addition to an MDR1-like core, MRP1 contains an N-terminal membrane-bound (TMD(0)) region and a cytoplasmic linker (L(0)), both characteristic of several members of the MRP family. In order to study the role of the TMD(0) and L(0) regions, we constructed various truncated and mutated MRP1, and chime...
متن کاملMembrane transport of camptothecin: facilitation by human P-glycoprotein (ABCB1) and multidrug resistance protein 2 (ABCC2)
BACKGROUND The purpose of the present study was to continue the investigation of the membrane transport mechanisms of 20-(S)-camptothecin (CPT) in order to understand the possible role of membrane transporters on its oral bioavailability and disposition. METHODS The intestinal transport kinetics of CPT were characterized using Caco-2 cells, MDCKII wild-type cells and MDCKII cells transfected ...
متن کاملContribution of multidrug resistance protein 2 (MRP2/ABCC2) to the renal excretion of p-aminohippurate (PAH) and identification of MRP4 (ABCC4) as a novel PAH transporter.
p-Aminohippurate (PAH) is the classical substrate used in the characterization of organic anion transport in renal proximal tubular cells. Although basolateral transporters for PAH uptake from blood into the cell have been well characterized, there is still little knowledge on the apical urinary efflux transporters. The multidrug resistance protein 2 (MRP2/ABCC2) is localized to the apical memb...
متن کاملIncreased apical insertion of the multidrug resistance protein 2 (MRP2/ABCC2) in renal proximal tubules following gentamicin exposure.
Multidrug resistance protein (MRP) 2 (MRP2; ABCC2), an organic anion transporter apically expressed in liver, kidney, and intestine, plays an important protective role through facilitating the efflux of potentially toxic compounds. We hypothesized that upon a toxic insult, MRP2 is up-regulated in mammalian kidney, thereby protecting the tissue from damage. We studied the effects of the nephroto...
متن کاملFunctional multidrug resistance protein (MRP1) lacking the N-terminal transmembrane domain.
The human multidrug resistance protein (MRP1) causes drug resistance by extruding drugs from tumor cells. In addition to an MDR-like core, MRP1 contains an N-terminal membrane-bound region (TMD0) connected to the core by a cytoplasmic linker (L0). We have studied truncated MRP1 versions containing either the MDR-like core alone or the core plus linker L0, produced in the baculovirus-insect (Sf9...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 34 شماره
صفحات -
تاریخ انتشار 2002